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The synthesis and structure of a fat, or triacylglyceride
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Figure 5.12 Examples of saturated and unsaturated fats and fatty acids

bond causes
bending

(a) Saturated fat and fatty acid (b) Unsaturated fat and fatty acid
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figure 5.1
DIFFERENT VIEWS
OF PHOSPHOLIPID
STRUCTURE.
Phospholipids are
composed of glycerol (pink)
linked to two fatty acids
and a phosphate group.
The phosphate group
(yellow) can have additional
molecules attached, such
as the positdvely charged
choline (green) shown.
Phosphatidylcholine is a
common component of
membranes, it is shown
in (@) with its chemical
formula, (b) as a space-
filling model and, (c) as the
icon that is used in most of
the figures in this chapter.
The phosphate portion of
the molecule is hydrophilic,
and the fatty acid tails
are hydrophobic. This
allows them to associate
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Figure 5.14 Two structures formed by self-assembly of phospholipids in agueous
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Figure 7.10
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Effects of unsaturation of phospholipids

e Fluidity of membrane

e Important in cold blooded animals
Saturated fats have higher melting point

e Conversion to cholesterol
e Harder to convert if more double bonds are present
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Lateral movement
{(-107 times per second)

(2) Movement of phospholipids
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Unsaturated hydrocarbon
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(b)) Membrane fluidity
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{(c) Cholesterol within the animal cell membrane




Fibers of Carbohydrate EXTRACELLULAR
extracellular FLUID
matrix (ECM)

Glycoprotein

Glycolipid

Filaments of Cholesterol ,,r'f
cytoskeleton /

Periﬁheral Intégral
protein protein CYTOPLASM

Copyright @ Pearson Education, Inc., publishing as Banjamin Cummings.




Elastin
Fibronectin

Integrin Proteoglycan

Actin
filament

Cytoplasm

figure 4.26
~ THE EXTRACELLULAR MATRIX. Animal cells are surrounded
by an extracellular matrix composed of various glycoproteins
that give the cells support, strength, and resilience.




Some functions of membrane proteins

(d) Cell-cell recognition

b) Enzymatic activity Enzymoe (e) Intercellular joining
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Transport
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Permeability of membranes
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Figure 11-1. Molecular Biology of the Cell, 4th Edition.



figure 5.7
BACTERIORHODOPSIN. This transmembrane protein mediates
photosynthesis in the archaean Halobacterium salinarium. The
protein traverses the membrane seven times with hydrophobic
helical strands that are within the hydrophobic center of the
lipid bilayer. The helical regions form a structure across the
bilayer through which protons are pumped by the retinal
chromophore (green) using energy from light.
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B-pleated sheets

B | bacterial
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A PORE PROTEIN. The bacterial transmembrane protein
porin creates large open tunnels called pores in the outer
membrane of a bacterium. Sixteen strands of B-pleated sheets
run antiparallel to one another, creating a so-called B-barrel in
the bacterial outer cell membrane. The tunnel allows water and
other materials to pass through the membrane.

http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=66323



Passive and active transport compared
Passive transport Active transport
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Human Red Blood Cells

Plant Cells

Hypertonic Isotonic Hypotonic

Solution Solution Solution
i g 5 hypertonic solution, water moves out of the cell causing the
cell to shrivel. In an isotonic soluton, water diffuses into and
Shriveled cells Normal cells Cells swell and out of the cell at the same rate, with no change in cell size. In
eventually burst a hypotonic solution, water moves into the cell. Direction and
e P .f' (' e amount of water movement is shown with blue arrows (top).
X As warer enters the cell from a hypotonic solutdon, pressure is
applied to the plasma membrane unsil the cell ruptures. Water
enters the cell due to osmotc pressure from the higher solute

figure 5.13

HOW SOLUTES CREATE OSMOTIC PRESSURE. In a

concentration in the cell. Osmotic pressure is measured as the
force needed to stop osmosis. The strong cell wall of plant cells
can withstand the hydrosmric pressure to keep the cell from
rupturing. This is not the case with animal cells.
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The contractile vacuole of Paramecium: an evolutionary adaptation for osmoregulation




Figure 7.15 Two models for facilitated diffusion
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The sodium-potassium pump: a specific case of active transport
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figure 5.15
THE SODIUM-POTASSIUM PUMP. The protein carrier known as the sodium—potassium pump transports sodium
{(INa*) and potassium (K*) ions across the plasma membrane. For every three Wa+ transported out of the cell, two
K* are transported into it. The sodium—potassium pump is fueled by ATP hydrolysis. The affinity of the pump for
Na*and K* is changed by adding or removing phosphate, which changes the conformadon of the protein.



Figure 7.19 Co-transport
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frgure 5.16
COUPLED TRANSPORT. A membrane protein transports Na*
into the cell, down its concentration gradient, at the same time
it transports a glucose molecule into the cell. The gradient

driving the Na* entry is so great that sugar molecules can

be brought in against their concentration gradient. The Na*

gradient is maintained by the Na*/K* pump.



Figure 7.18 An electrogenic pump
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Electrogenic transport: This is an active transport process driven
by electric potentials.
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Passive transport

e Diffusion
e Free-down concentration gradient
e Across membrane

e With or without channel proteins
Facilitated diffusion



Active transport

e Pumps molecules or ions against a
concentration gradient

e Requires the input of energy
e (e.g. ATP, light)



Sodium (Na*) Potassium (K*) pump

e Cells maintain low intracellular [Na*]
e 440mM outside, 50 mM inside

e Cells maintain high intracellular [K*]
e 560mM inside, 90mM outside

e lons cannot diffuse through lipid bilayer
e Sodium-Potassium dependent ATPase



Attachment to cytoskeleton

b) Enzymatic activity

¢) Signal transduction
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(d) Cell-cell recognition

e) Intercellular joining

(f) Attachment to the cytoskeleton
and extracellular matrix (ECM)
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Intercellular joining
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Intercellular junctions in animal and plant tissues

Tight junction
Tight junctions prevent
fluid from moving
across a layer of cells
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figure 4.25
" CELL WALLS IN PLANTS. Plant cell walls are thic ., strong, and
rigid. Primary cell walls are laid down when the cell is young
Thicker secondary cell walls may be added later when th

full FOWT.
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Signal transduction
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The three types of

Bacterial o :," .

endocytosis in animal cells
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Exocytosis

Plasma membrane

Secretory product

Secretory vesicle

Cytoplasm

d.

DL O
figure 5.18
- LS
EXOCYTOSIS. a. Proteins and other molecules are secreted from cells in small packets called vesicles, whose membranes fuse with the
plasma membrane, releasing their contents outside the cell. 5. A false-colored transmission electron micrograph showing exocytosis.
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